Estimation of mask effectiveness perception for small domains using multiple data sources
Estimation of mask effectiveness perception for small domains using multiple data sources
Author(s): Aditi Sen, Partha LahiriSubject(s): Economy, Methodology and research technology, Health and medicine and law, Policy, planning, forecast and speculation
Published by: Główny Urząd Statystyczny
Keywords: cross-validation; jackknife; survey data; synthetic estimation;
Summary/Abstract: Understanding the impacts of pandemics on public health and related societal issues at granular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wearing is one of the few precautions against it. To quantify people’s perception of mask effectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding America Study’s (UAS) survey data on COVID-19 as our primary data source. Our data analysis shows that direct survey-weighted estimates for small areas could be highly unreliable. In this paper, we develop a synthetic estimation method to estimate proportions of perceived mask effectiveness for small areas using a logistic model that combines information from multiple data sources. We select our working model using an extensive data analysis facilitated by a new variable selection criterion for survey data and benchmarking ratios. We suggest a jackknife method to estimate the variance of our estimator. From our data analysis, it is evident that our proposed synthetic method outperforms the direct survey-weighted estimator with respect to commonly used evaluation measures.
Journal: Statistics in Transition. New Series
- Issue Year: 23/2022
- Issue No: 1
- Page Range: 1-20
- Page Count: 20
- Language: English