Teaching Machine Learning in School: A Systematic Mapping of the State of the Art
Teaching Machine Learning in School: A Systematic Mapping of the State of the Art
Author(s): Lívia S. Marques, Christiane Gresse von Wangenheim, Jean Carlo Rossa HauckSubject(s): Education, ICT Information and Communications Technologies
Published by: Vilniaus Universiteto Leidykla
Keywords: Machine Learning; teaching; K-12;
Summary/Abstract: Although Machine Learning (ML) is integrated today into various aspects of our lives, few understand the technology behind it. This presents new challenges to extend computing education early to ML concepts helping students to understand its potential and limits. Thus, in order to obtain an overview of the state of the art on teaching Machine Learning concepts in elementary to high school, we carried out a systematic mapping study. We identified 30 instructional units mostly focusing on ML basics and neural networks. Considering the complexity of ML concepts, several instructional units cover only the most accessible processes, such as data management or present model learning and testing on an abstract level black-boxing some of the underlying ML processes. Results demonstrate that teaching ML in school can increase understanding and interest in this knowledge area as well as contextualize ML concepts through their societal impact.
Journal: Informatics in Education - An International Journal
- Issue Year: 19/2020
- Issue No: 2
- Page Range: 283-321
- Page Count: 40
- Language: English