Indukcja reguł dla danych niekompletnych i niezbalansowanych: modele klasyfikatorów i próba ich zastosowania do predykcji ryzyka operacyjnego w torak
Classification rules extraction for missing and imbalance data: models of classifiers and initial results in the rules-based thoracic surgery risk pre
Author(s): Maciej Zięba, Jerzy Kołodziej, Konrad Pawełczyk, Marek Marciniak, Marek Lubicz, Adam RzechonekSubject(s): Economy
Published by: Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Keywords: data mining; classification; rules extraction; class imbalance; missing values; surgical risk prediction
Summary/Abstract: The classification problem of multi-faceted imperfect data, e.g. with missing values and at the same time with class imbalance, is considered. Aspects of the classification effectiveness and interpretability of the results through classification rules extraction for the ”black-box” like classifiers are discussed. An approach based on a boosted SVM classifier and an oracle-based decision rules extraction procedure is proposed and applied to a sample hospital data base of Wrocław Thoracic Surgery Centre. The research was performed using Imbalanced Learning Module of the KEEL Data Mining software package and WEKA Ma-chine Learning environment.
Journal: Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
- Issue Year: 2014
- Issue No: 328
- Page Range: 146-155
- Page Count: 10
- Language: Polish