Wpływ wybranych metod uzupełniania brakujących danych na wyniki klasyfikacji obiektów z wykorzystaniem drzew klasyfikacyjnych w przypadku zbiorów dany
Influence of data imputation methods on the results of object classification using classification trees in the case of small data sets – simulation as
Author(s): Małgorzata MisztalSubject(s): Economy
Published by: Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Keywords: missing values; single and multiple imputation; classification trees
Summary/Abstract: Classification tree is an example of the learning algorithm coping with missing values. In the paper some selected missing data techniques are compared by artificially simulating different proportions and mechanisms of missing data using complete data sets mainly from the UCI repository of machine learning databases. The goal of the paper is to assess the influence of these techniques on the results of object classification by means of classification trees in the case of small data sets.
Journal: Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
- Issue Year: 2012
- Issue No: 242
- Page Range: 370-379
- Page Count: 10
- Language: Polish