Non-random errors and their importance in testing of hypotheses Cover Image

Błędy nielosowe i ich znaczenie w testowaniu hipotez
Non-random errors and their importance in testing of hypotheses

Author(s): Mirosław Szreder
Subject(s): Economy
Published by: Główny Urząd Statystyczny
Keywords: testing of hypotheses; sampling error; random error; non-random errors

Summary/Abstract: Increasing numbers of non-random errors are observed in contemporary sample surveying – in particular, those resulting from no response or faulty measurements (imprecise statistical observation). Until recently, the consequences of these kinds of errors have not been widely discussed in the context of the testing of hypoteses. Researchers focused almost entirely on sampling errors (random errors), whose magnitude decreases as the size of the random sample grows. In consequence, researchers who often use samples of very large sizes tend to overlook the influence random and non-random errors have on the results of their study.The aim of this paper is to present how non-random errors can affect the decision-making process based on the classical hypothesis testing procedure. Particular attention is devoted to cases in which researchers manage samples of large sizes. The study proved the thesis that samples of large sizes cause statistical tests to be more sensitive to non-random errors. Systematic errors, as a special case of non-random errors, increase the probability of making the wrong decision to reject a true hypothesis as the sample size grows. Supplementing the testing of hypotheses with the analysis of confidence intervals may in this context provide substantive support for the researcher in drawing accurate inferences.

  • Issue Year: 66/2021
  • Issue No: 03
  • Page Range: 7-21
  • Page Count: 15
  • Language: Polish
Toggle Accessibility Mode